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Stability curves are computed for both spatially and temporally growing dis- 
turbances in a stratified mixing layer between two uniform streams. The low 
Froude number limit, in which the effects of buoyancy predominate, and the 
high Froude number limit, in which the effects of density variation are manifested 
by the inertial terms of the vorticity equation, are considered as limiting cases. 
For the buoyant case, although the spatial growth rates can be predicted 
reasonably well by suitable use of the results for temporal growth, spatially 
growing disturbances appear to have high group velocities near the lower cut- 
off wave-number. For the inertial case, it is demonstrated that density varia- 
tions can be destabilizing. More precisely, when the stream with the higher 
velocity has the lower density, both the wave-number range of unstable dis- 
turbances and the maximum spatial growth rate are increased relative to the 
case of homogeneous flow. Finally, it is shown how the growth rate of the most 
unstable wave in the inertial case diminishes as buoyancy becomes important. 

1. Introduction 
The linear stability theory of heterogeneous shear flows has been of interest 

for many years, primarily due to its relevance to atmospheric and oceanic 
phenomena. For such flows, although the flow velocities are rather small, the 
Reynolds number is still quite large, and so an incompressible inviscid flow model 
would appear to be a reasonable one. The linearized versions of the equation of 
incompressibility and the vorticity equation can be combined to yield the 
governing stability equation, which is becoming known as the Taylor-Goldstein 
equation. From this equation, Miles (1961) and Howard (1961) have demon- 
strated that a sufficient condition for linear stability is that the local Richardson 
number, which is a ratio of the stabilizing effect of gravity to  the destabilizing 
effect of shear, be everywhere greater than a. This result is true for the general 
oase, when density variations occur in both the buoyant and inertial terms of 
the equations of motion. 

As fax as eigenvalues and eigensolutions for continuous profiles are concerned, 
however, de6ailed results have been restricted mainly to the case of neutral 
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disturbances in the low Froude number limib, when the inertial effects of hetero- 
geneity are neglected (cf. Drazin & Howard 1966; Thorpe 1969). One example, 
first discussed by Hprlmboe, corresponds to a mixing-layer profile of the form 

u(y) = l+banhy, p = exp(-ptanhy), (1.1) 

where U and p are the mean non-dimensional velocity and density profiles and 
are functions of the dimensionless vertical co-ordinate y. Comparison of the shape 
of the above profiles with the experimental mixing-layer data of Scotti (1969) 
shows reasonable agreemenb, although Scotti’s results actually concern flows in 
which the difference in velocity across the layer is much smaller than the mean 
velocity. This has no consequence for the temporal stability problem but does 
affect the amplification rates of spatially growing disturbances. Hazel (1969) 
has obtained results for temporally growing disturbances for the flow ( l . I ) ,  as 
well as for various other flow configurations. Our results for spatially growing 
disturbances, which should correspond more closely to those observed experi- 
mentally in a wind tunnel, are intended to supplement his results. Maslowe & 
Thompson (1971) present stability curves a t  finite Reynolds numbers, in the 
low Froude number limit, for the flow (1.1). Their results indicate that the 
inviscid results should be meaningful for Reynolds numbers above, roughly, 
200, although this depends upon the Richardson number (and also, perhaps, 
upon the process of linearization; for a discussion of the non-linear critical layer 
in stratified shear flows, see Kelly & Maslowe (1970)). 

The large Froude number limit, in which buoyancy forces are negligible, is 
of some practical interest for certain propulsive applications, such as the gaseous 
core nuolear rocket engine employing the coaxial flow concept (McLafferty 1968). 
In  this limit, a solution was obtained by Menkes (1959) for the flow 

U(y) = tanh y, p(y) = exp ( -  2Py). 

Menkes found the stability boundary to be given by c = -/3, a2 +P2 = 1, where 
c and a are the neutral disturbance phase speed and wave-number, respectively, 
and a < 1 for unstable disturbances. According to this result, the influence of 
density variation is stabilizing in the sense that as p increases, the range of 
unstable 01 decreases, and, for > 1, the flow is stable. This result has been quoted 
on several occasions as indicating that the inertial variations of density are 
stabilizing. In  reality, the result appears to be an anomalous one, peculiar to the 
assumed density profile which vanishes as y + 00. For a density profile which 
approaches a constant value as y --f -F. 00, the Kelvin-Helmholtz model should 
govern the stability at  low a, and this model predicts that the flow will be un- 
stiable in the absence of gravity. One therefore suspects that the conclusion 
of Menkes is misleading as far as more realistic flows are concerned. In fact, we 
shall see later that, for the flow described by (1.1)) the inertial effects of density 
variation can actually be destabilizing. In contrast, it is interesting to remember 
that, for the buoyant ease, Drazin (1958) obtained meaningful results regarding 
shear flow instability by use of the model given by (1.2). 

Because the theorem of Miles and Howard predicts that the flow will become 
stable as the local Richardson number approaches i, we consider an intermediate 
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case in the concluding section in order to demonstrate how the growth rate of 
the wave which is most unstable at high Froude numbers decreases as the Froude 
number decreases. 

2. Formulation and numerical procedure 
We consider the stability of a horizontal parallel flow that is incompressible, 

but whose density varies in the vertical direction. In  the linearized theory, we 
superimpose a small perturbation upon the mean flow, where the disturbance 
stream function $ is of the form 

$ = q5(y)exp[ia(x-ct)]. (2.1) 

For temporally varying waves, a is the real wave-number and c is a complex 
quantity whose real part is the wave speed. The density perturbation, which is 
represented in a similar manner, can be eliminated by combining the incompres- 
sibility and vorticity eqations. The resulting equation for q5 can be written in the 
form (cf. Drazin & Howard 1966) 

where we have assumed a density variation of the form i j  = exp { - Pf(y)). The 
variables in (2.2) have been made non-dimensional with respect to a length scale 
L and characteristic velocihy V .  If g is the gravitational constant, the dimension- 
less parameter J, = gPL/V2 (2-3) 

is an overall Richardson number, while (J,/P) is the reciprocal of the Froude 
number and 

is the local Richardson number. 
As Iyl becomes large, we assume that U and p become constant (c.f. 1.1). 

q5 N e-au, q5' N -a# as y +  +co, Hence, we have 

and q5 -cay, q5'~aq5 as y-f -a. (2.6) 

In  meteorological and oceanographical phenomena, P < 1 typically and 
J, N O(1) so that the terms proportional to ,B can be neglected in (2.2). Holmboe 
found in that limit the singular neutral mode 

c = 1, J, = a( 1 -a) ,  q5 = (sech y)a (tanh y)l-a, (2.7) 

corresponding to the mean flow profiles (1.1). Note that because the local 
Richardson number J ( y )  = J,cosh2y in Holmboe's model, the minimum value 
of J ( y )  is at the critiical point, y = 0,  where Z ( y )  = c. 

When the density variation is moderate and occurs over a relatively small 
distance, and the velocity is reasonably high, we have the inertial limit charac- 
terized by J, < 1 and ,B N O( 1). For the moment, let us retain both buoyant and 
inertial terms so that the numerical procedure can be formulated on a general 
basis. The method we will employ has been used previously by Michalke (1965) 
in his study of a homogeneous mixing layer having the velocity profile (1.1). 
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To begin with, we introduce the transformation 

which, after substituting into (2.2), leads to the Riccati equation 

Next, we transform the independent variable to 

2 = tanhy, (2.10) 

thereby reducing the range of integration to - 1 Q 2 < + 1. Harlmboe’s model, 
in terms of 2, is written as 

ii= 1 + 2 ,  ; i i l=f’=l-Z2, U”=-22(1 -22) .  (2.11) 

When substituted into (2.9), equations (2.10) and (2.11) yield the desired form 
of the stability equation, namely 

+ p  @-- 1-22 ) .  (2.12) 
1 - 2 2  1 + 2 - c  ( l+Z-c )2  ” ” (  1 + 2 - c  

a 2 - @ 2  2 2  at=----  

The boundary conditions for CD are, from (2.5) to (2.10)) 

@(- l )  = a  and @(1) = - a .  (2.13) 

By employing L’HBpital’s rule and the above values for 0, we find that the 
initial values for W, required for the numerical integration of (2.12), are 

and 

(2.14) 

(2.15) 

In  the eigenvalue problem associated with (2.12)-(2.15)) all but two of the 
various parameters can be specified independently. An iterative procedure is 
used t o  determine these constants. To apply this procedure, (2.12) is integrated 
inward from both 2 = + 1 and 2 = - 1, which, in general, leads to two different 
values of O(0). Only when the proper values have been used for the unspecified 
coiistants will both the real and imaginary parts of CD match at 2 = 0. 

The numerical integration of (2.12) has been carried out using a Runge-Kutta 
procedure with a step size of 0.025. Double-precision, complex arithmetic was 
employed in making these calculations, the results of which are presented in the 
following sections of this paper. 

3. The buoyant case 
We first consider the limit /3 + 0 and neglect the inertial terms in (2.12)-(2.15). 

The computation of stability curves for this case is simplified by the observation 
that, due to the antisymmetry of U and f, c, = 1 in the temporal theory. In  addi- 
tion, the stability boundary for Herlmboe’s model is already known. Therefore, 
the calculation of curves of constant growth rate, aci, is relatively straightforward. 
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The numerical results are shown in figure 1 along with the approximate curves 
calculated by Drazin & Howard (1961) for small a and 4. Corresponding to each 
value of J,, there is a wave-number for which the growth rate is a maximum. 
The locus of such points is indicated by the curve labelled aM. The Drazin- 
Howard expansion predicts aJf adequately only for the higher values of J ,  
(i.e. lower values of growth rate). 

a 

FIGURE 1. Curves of constant temporal growth rate in the buoyant case (aM is the 
wave-number for maximum amplification). - - -, Drazin & Howard (1961). 

The preceding development has been based upon the consideration of spatially 
periodic waves that can grow in time. However, in most experiments involving 
shear flows, unstable waves will actually grow in space rather than in time. The 
proper Fourier representation in that case is of the form 

where a is now complex and w ,  the frequency, is real. The real part ofa is the wave- 
number of the disturbance, whereas - ai is the spatial amplification factor. To 
modify (2.12)-( 2.15) for spatially growing waves, the quantity c is simply replaced 
by w/a .  

Let us now examine the numerical results for spatially growing waves. Using 
the iteration procedure discussed above, stability curves of constant growth rate 
( - ai), have been computed. These results are illustrated in figure 2. The wave- 
number for maximum growth is always somewhat less than that occurring in 
the temporal case. 

Because the waves are no longer spatially periodic, c, $; 1, in general. The 
dispersive character of waves that grow in space is illustrated by the curves of 
c, vs. g i n  figure 3. As pointed out by Michalke, the greatest variation in the phase 
speed occurs at  the lower frequencies, but it is clear that the variation is quali- 
tatively different from stratified flow. Indeed, ac,/aa,, and therefore the group 
velocity, is very large near the lower cut-off wave-number (this can also be seen 
easily from the Kelvin-Helmholtz dispersion relation by allowing a to approach 
the cut-off wave-number from below). 

$ = $(Y) exp i-i(ax- at)], (3.1) 
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FIGURE 2. Curves of constant spatial growth rate in the buoyant case. 

FIGURE 3. The variation of wave-speed with wave-number for spatially 
growing disturbances. 

8" 
I 

a, cr, 
FIGURE 4. Comparison of spatial growth rates with (acJc,):  

( a )  Jo = 0.05, ( b )  Jo = 0.15. 
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In figure 4, we compare the calculated values of cli to those predicted by use of 
the transformation ai = - (a ,cd/cr) ,  arci being the temporal growth rate and 
c, = 1, which appears to be the type of transformation which Scotti & Corcos 
(1969) used to relate their experimental results to Hazel’s computed values of 
(mi). Using the results of Gaster (1962)) it would be more precise to divide by 
the group velocity, rather than the phase velocity, of the disturbances which 
grow with time, but these disturbances are noii-dispersive so that the two 
velocities are equal. As the Richardson number increases, the error incurred 
through use of the above first-order relation for cli diminishes because cli itself 
is diminishing and, as figure 3 indicates, the dispersion is rather weak over much 
of the wave-number range. The exception occurs at  the lower cut-off wave- 
number, where Gaster’s method would appear to be inapplicable due to the 
fact that the frequency is not an analytic function of the wave-number in the 
Kelvin-Helmholtz limit. At any rate, the numerical analysis always gives higher 
spatial growth rates than those obtained by the use of the approximate relation. 
From figure 3 of Scotti & Corcos (1969), one can see that the experimental results 
lie below the predicted growth rates, a discrepancy which clearly cannot be 
explained on the basis that only an approximate relation for the spatial growth 
rate was employed. 

4. The inertial case 
In the large Froude number limit, we set J, = 0 and take1  N O( 1). Miles (1961) 

has shown, by considering the variation of tihe Reynolds stress, that in the case 
of a neutral mode 

where the subscript c designates the point ZC = c. The condition (4.1), in con- 
junction with (2.2)) leads to the result; that neutral solutions are regular in the 
inertial limit. Furthermore, (4.1) provides an explicit relationship between c 
and /3 in the case of a neutral mode. Thus, for Halmboe’s model, we obtain 

(4.1) (pu‘); = 0, 

c = l + - +  1+- . ;-( b.)+ 
BY considering the limit /3 --f 0, it  is clear that the ( + ) sign is to be associated with 
/3 < 0 and the ( - )  sign with /3 > 0. In  either case, we note, in contrast to the 
result of Menkes, that the wave speed approaches the maximum or minimum 
mean flow velocity only as 1/31 -+ 00. This is directly associated with the result, 
to be discussed presently, that the flow cannot be rendered stable for any finite /3. 

Using (4.2), the governing equations (2.12)-(2.15) have been solvednumerically 
to obtain the neutral curve and curves of constant ci for temporally growing 
disturbances. These are displayed in figure 5. As /3 3 0,  the known results for 
homogeneous flow are duplicated and, for finite and a + 0,  the Kelvin- 
Helmholtz result 

ZC(00) - U (  - 00) ] [p(m)j5( - 00)]9 = sechb (4.3) 

is obtained. 
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Hence, in contrast to the result of Menkes, the flow is unstable for all finite 8. 
Although the range of unstable wave-numbers increases, one would say that the 
overall effect of density variation is stabilizing because, as figure 6 indicates, the 
maximum growth rate for any p is less than that which occurs in the homogeneous 
case. This conclusion changes, however, when we consider spatially growing 
disturbances, as figure 7 indicates. In  that case, both the range of unstable wave- 
numbers and the maximum growth rate for /3 > 0 can be greater than for homo- 
geneous flow. An absolute maximum in the spatial amplification factor is 
achieved for ,8 2 1.75 and is approximately 1.64 times the amplification factor 
for homogeneous flow. Ultimately, for very high /3, it appears that reduced 
growth rates might occur but, for moderate p, it appears reasonable to sbate 
that the flow is destabilized when the lighter fluid has the higher velocity and 
stabilized, as far as the growth rate is concerned, when it has the lower velocity 
(as is apparent from the results for /3 < 0). 

2.0 - 

a 

FIGURE 5. Curves of constant ci for the inertial case. 

3.0 - 
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FIGURE 6. Curves of constant temporal growth rate for the inertial case. 
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The same general trends have been observed experimentally by Tombach 
(1969). A more detailed experimental investigation is currently being carried out 
at the California Institute of Technology by Professor Roshko and Dr R. Davey 
(see Davey 1971). While revising the present paper, the authors received a report 
by Gropengiesser (1969), in which the stability of it mixing layer in a compressible 
fluid, between streams of different velocity and temperature, was investigated. 
For low Mach numbers, the same trend in spatial growth rate as observed here 
was obtained, although it is unclear from Gropengiesser's results that a tempera- 
ture ratio for maximum instability exists. For high free-stream Mach numbers, 

0.2 

FIGURE 7. Curves of constant spatial growth rate for the inertial case 
( -ai = 0.3741 for p = 1.75, a, = 0.42). 

- 
- 
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however, the trend is reversed. Because the shear-layer model is pertinent to 
the jet stability problem when the width of bhe jet is large in comparison Co a 
typical wavelength, the results have importance in view of the argument of 
Berman & Ffowcs Williams (1970) that, in order to reduce jet noise, transition 
to turbulence should take place as rapidly as possible. 

The reason for the enhanced amplification rate in the spatial growth case 
appears to be due simply to the decrease in the wave velocity for the wave of 
maximum amplification, as indicated in figure 8. The energy production term, 
in the energy equation for a disturbance, involves both the density and the 
shear of Che mean flow. Over a certain range of positive p, it; appears that the 
decrease in the shear in the ‘critical layer’ region, which is shifted downwards, 
can be compensated by the increase in densiby there. On the other hand, the 
rate at  which the disturbance energy increases undergoes the following trans- 
formation, from the temporally to spatially amplified situation, 

(4.4) 

where the integrals are to be taken over the unbounded y domain and a wave- 
length. Because, for our model, U decreases more rapidly than U’ for IyI < 1, it 
seems plausible to expect higher spatial amplification rates in order to strike 
a balance. 

In  conclusion, it should be pointed out that the results of Menkes are probably 
meaningful to a situation when the scale of the density layer is much larger than 
that of the velocity layer, although they are meaningless for the case of dis- 
turbances whose wavelengths are large in comparison to the scale of either layer 
for a realistic situation. Hence, the inertial stability problem for a heterogeneous 
shear flow is sensitive to the various scales involved, which is certainly also true 
for the buoyant case (cf. Hazel 1969). 
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0 0.05 0.10 0.15 

T 

J O  

wave in the inertial case (a, = 0.42, /3 = 3-75). 
FIGURE 9. The effect of buoyancy upon the growth rate of the most unstable 
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5. The combined case 
As pointed out in $1, when both buoyancy and inertial effects are present, the 

flow must become stable as the minimum local Richardson number approaches a. 
In  figure 9, we see how the spatial growth rate of the disturbance which is most 
unstable in the high Froude number limit decreases as the overall Richardson 
number increases. Because the value of the most unstable wave-number is 
relatively insensitive to variations in Froude number, these results are repre- 
sentative of the general case. The wave is stable when Jo = 0.112, corresponding 
to a localRichardson number J ,  = 0.212 (the wave velocity varied onlyfrom 0.320 
to 0.316asJ0wasincreasedfromzero to0-11). Fromfigure 1, wenotethat thisisa 
somewhat smaller value of the local critical Richardson number than occurs in 
the buoyant case (p -+ 0) ,  which indicates that the interaction of buoyancy and 
inertial density variations is rather involved. 

Support for this work was given to one of us (R. E. K.) by the National Science 
Foundation (GK-4213). 
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